Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Neuropsychopharmacol ; 26(7): 513-521, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37343217

RESUMO

BACKGROUND: Evidence has accumulated demonstrating the existence of opioid receptor heteromers, and recent data suggest that targeting these heteromers could reduce opioid side effects while retaining therapeutic effects. Indeed, CYM51010 characterized as a MOR (mu opioid receptor)/DOR (delta opioid receptor) heteromer-preferring agonist promoted antinociception comparable with morphine but with less tolerance. In the perspective of developing these new classes of pharmacological agents, data on their putative side effects are mandatory. METHODS: Therefore, in this study, we investigated the effects of CYM51010 in different models related to drug addiction in mice, including behavioral sensitization, conditioned place preference and withdrawal. RESULTS: We found that, like morphine, CYM51010 promoted acute locomotor activity as well as psychomotor sensitization and rewarding effect. However, it induced less physical dependence than morphine. We also investigated the ability of CYM51010 to modulate some morphine-induced behavior. Whereas CYM51010 was unable to block morphine-induced physical dependence, it blocked reinstatement of an extinguished morphine induced-conditioned place preference. CONCLUSIONS: Altogether, our results reveal that targeting MOR-DOR heteromers could represent a promising strategy to block morphine reward.


Assuntos
Morfina , Receptores Opioides delta , Camundongos , Animais , Morfina/farmacologia , Receptores Opioides delta/agonistas , Receptores Opioides mu , Analgésicos Opioides/farmacologia , Recompensa
2.
Br J Pharmacol ; 177(20): 4782-4795, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32851651

RESUMO

BACKGROUND AND PURPOSE: Opioids are effective painkillers. However, their risk-benefit ratio is dampened by numerous adverse effects and opioid misuse has led to a public health crisis. Safer alternatives are required, but isolating the antinociceptive effect of opioids from their adverse effects is a pharmacological challenge because activation of the µ opioid receptor triggers both the antinociceptive and adverse effects of opioids. EXPERIMENTAL APPROACH: The TREK1 potassium channel is activated downstream of µ receptor and involved in the antinociceptive activity of morphine but not in its adverse effects. Bypassing the µ opioid receptor to directly activate TREK1 could therefore be a safer analgesic strategy. KEY RESULTS: We developed a selective TREK1 activator, RNE28, with antinociceptive activity in naive rodents and in models of inflammatory and neuropathic pain. This activity was lost in TREK1 knockout mice or wild-type mice treated with the TREK1 blocker spadin, showing that TREK1 is required for the antinociceptive activity of RNE28. RNE28 did not induce respiratory depression, constipation, rewarding effects, or sedation at the analgesic doses tested. CONCLUSION AND IMPLICATIONS: This proof-of-concept study shows that TREK1 activators could constitute a novel class of painkillers, inspired by the mechanism of action of opioids but devoid of their adverse effects.


Assuntos
Analgésicos Opioides , Neuralgia , Analgésicos , Analgésicos Opioides/efeitos adversos , Animais , Camundongos , Camundongos Knockout , Morfina , Receptores Opioides mu
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...